Welcome to Fusis!
Our mission statement here
Newest Research Groups

Neutrino

This is a response to a question regarding the charge of the neutrino in the Geometric Algebra construction of the Standard Model using Cl(4)CCl(4) \otimes \mathbb{C}, some of which is discussed on YouTube here.

In that model, the neutrino portion of the Clifford object ψ\psi is given by:

ψν(ν2+ν3q0q1+ν0q0q2+ν1q1q2)V1+(ν^2ν^3q0q1ν^0q0q2+ν^1q1q2)V2+(ν2ν3q0q1ν0q0q2+ν1q1q2)V15+(ν^2+ν^3q0q1+ν^0q0q2+ν^1q1q2)V16V1q0q0q1q1q2q2q3q3V2q0q0q1q1q2q2q3q3V15q0q0q1q1q2q2q3q3V16q0q0q1q1q2q2q3q3\begin{aligned} \psi_{\nu} &\equiv (\nu_2 + \nu_3 \mathbf{q}^{\dagger}_0 \mathbf{q}^{\dagger}_1 + \nu_0 \mathbf{q}^{\dagger}_0 \mathbf{q}^{\dagger}_2 + \nu_1 \mathbf{q}^{\dagger}_1 \mathbf{q}^{\dagger}_2) V_1 \\ &+ (\widehat{\nu}_2 - \widehat{\nu}_3 \mathbf{q}_0 \mathbf{q}^{\dagger}_1 - \widehat{\nu}_0 \mathbf{q}_0 \mathbf{q}^{\dagger}_2 + \widehat{\nu}_1 \mathbf{q}^{\dagger}_1 \mathbf{q}^{\dagger}_2) V_2 \\ &+ (\nu^*_2 - \nu^*_3 \mathbf{q}^{\dagger}_0 \mathbf{q}_1 - \nu^*_0 \mathbf{q}^{\dagger}_0 \mathbf{q}_2 + \nu^*_1 \mathbf{q}_1 \mathbf{q}_2) V_{15} \\ &+ (\widehat{\nu}^*_2 + \widehat{\nu}^*_3 \mathbf{q}_0 \mathbf{q}_1 + \widehat{\nu}^*_0 \mathbf{q}_0 \mathbf{q}_2 + \widehat{\nu}^*_1 \mathbf{q}_1 \mathbf{q}_2) V_{16} \\ V_1 &\equiv \mathbf{q}_0 \mathbf{q}^{\dagger}_0 \mathbf{q}_1 \mathbf{q}^{\dagger}_1 \mathbf{q}_2 \mathbf{q}^{\dagger}_2 \mathbf{q}_3 \mathbf{q}^{\dagger}_3 \\ V_2 &\equiv \mathbf{q}^{\dagger}_0 \mathbf{q}_0 \mathbf{q}_1 \mathbf{q}^{\dagger}_1 \mathbf{q}_2 \mathbf{q}^{\dagger}_2 \mathbf{q}_3 \mathbf{q}^{\dagger}_3 \\ V_{15} &\equiv \mathbf{q}_0 \mathbf{q}^{\dagger}_0 \mathbf{q}^{\dagger}_1 \mathbf{q}_1 \mathbf{q}^{\dagger}_2 \mathbf{q}_2 \mathbf{q}^{\dagger}_3 \mathbf{q}_3 \\ V_{16} &\equiv \mathbf{q}^{\dagger}_0 \mathbf{q}_0 \mathbf{q}^{\dagger}_1 \mathbf{q}_1 \mathbf{q}^{\dagger}_2 \mathbf{q}_2 \mathbf{q}^{\dagger}_3 \mathbf{q}_3 \end{aligned}

ν2\nu_2 and ν3\nu_3 are the spin up and down right-handed neutrino states, and ν0\nu_0 and ν1\nu_1 are the spin up and down left-handed neutrino states. ν^\widehat{\nu} are the backward-time states mentioned by the Two-State Vector Formalism. Electro-weak interactions are rotations in the q2/q3\mathbf{q}_2 / \mathbf{q}_3 plane from the left side. To get the probability current vector, we use the reverse operator on ψ\psi

Jνψνγ0ψ~ν=jμγμγ0q0+q0γ1q1q1γ2i(q1+q1)γ3q0q0\begin{aligned} J_{\nu} \equiv \psi_{\nu} \gamma_0 \tilde{\psi}_{\nu} = j^{\mu} \gamma_{\mu} \\ \gamma_0 \equiv \mathbf{q}^{\dagger}_0 + \mathbf{q}_0 \\ \gamma_1 \equiv \mathbf{q}^{\dagger}_1 - \mathbf{q}_1 \\ \gamma_2 \equiv i(\mathbf{q}^{\dagger}_1 + \mathbf{q}_1) \\ \gamma_3 \equiv \mathbf{q}^{\dagger}_0 - \mathbf{q}_0 \end{aligned}

The charge operator QQ acting on ψ\psi is as follows:

Q(ψ)(q3q3)ψ13ψ((q1q1)+(q2q2)+(q3q3))qjqk12(qjqkqkqj)\begin{aligned} Q(\psi) &\equiv (\mathbf{q}_3 \wedge \mathbf{q}^{\dagger}_3) \psi - \frac{1}{3} \psi ((\mathbf{q}_1 \wedge \mathbf{q}^{\dagger}_1) + (\mathbf{q}_2 \wedge \mathbf{q}^{\dagger}_2) + (\mathbf{q}_3 \wedge \mathbf{q}^{\dagger}_3)) \\ \mathbf{q}_j \wedge \mathbf{q}^{\dagger}_k &\equiv \frac{1}{2}(\mathbf{q}_j \mathbf{q}^{\dagger}_k - \mathbf{q}^{\dagger}_k \mathbf{q}_j) \end{aligned}

Note that the charge operator multiplies ψ\psi form both the left AND the right.
For the case of the neutrino, the right-side contribution adds to 12-\frac{1}{2} while the left-side contribution is +12+\frac{1}{2}, giving us a total of 00.

The reason this works this way is detailed in the construction of the model, along with the basic rules of the geometric algebra generators qj\mathbf{q}_j and their conjugates qj\mathbf{q}^{\dagger}_j

qjqk+qkqj=0qjqk+qkqj=δjk\begin{aligned} \mathbf{q}_j \mathbf{q}_k + \mathbf{q}_k \mathbf{q}_j &= 0 \\ \mathbf{q}_j \mathbf{q}^{\dagger}_k + \mathbf{q}^{\dagger}_k \mathbf{q}_j &= \delta_{jk} \end{aligned}